Dynamic Network Evolution: Models, Clustering, Anomaly Detection

نویسندگان

  • Cemal Cagatay Bilgin
  • Bülent Yener
چکیده

Traditionally, research on graph theory focused on studying graphs that are static. However, almost all real networks are dynamic in nature and large in size. Quite recently, research areas for studying the topology, evolution, applications of complex evolving networks and processes occurring in them and governing them attracted attention from researchers. In this work, we review the significant contributions in the literature on complex evolving networks; metrics used from degree distribution to spectral graph analysis, real world applications from biology to social sciences, problem domains from anomaly detection, dynamic graph clustering to community detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Based Anomaly Detection in Wireless LAN

Data mining methods have gained importance in addressing computer network security. Existing Rule based classification models for anomaly detection are ineffective in dealing with dynamic changes in intrusion patterns and characteristic. Unsupervised learning methods have been given a closer look for network anomaly detection. We investigate hierarchical clustering algorithm for anomaly detecti...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Adaptive real-time anomaly detection with incremental clustering

Anomaly detection in information (IP) networks, detection of deviations from what is considered normal, is an important complement to misuse detection based on known attack descriptions. Performing anomaly detection in real-time places hard requirements on the algorithms used. First, to deal with the massive data volumes one needs to have efficient data structures and indexing mechanisms. Secon...

متن کامل

Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...

متن کامل

Neuro-fuzzy Based Clustering of Intrusion Detection in Combined Network

The partition based k-means cluster used to group anomaly traffic data aggregates, form the cluster with distance measure as the parameter of normal and anomaly clusters. However frequent variation on the data propagation change the value of the traffic data packets influenced by scrupulous nodes polluting the normal data packets. The dynamic and frequent changes of the propagation data, genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009